Part A 常微分方程式

CH1 一階常微分方程式 .. A-2
CH2 二階線性常微分方程式 .. A-6
CH3 高階線性常微分方程式 .. A-11
CH4 常微分方程系統、相位平面、定性方法 A-13
CH5 常微分方程式之級數解、特殊函數 A-17
CH6 拉普拉斯變換 ... A-32
1.1 可分離 ODE、模型化

1) 變數可分離方程式：

\[g(y) y' = f(x) \] \Rightarrow \[g(y) \frac{dy}{dx} = f(x) \] \Rightarrow \[g(y)dy = f(x)dx \]

可將左邊對 \(y \)，右邊對 \(x \) 各自積分，即為本題之通解 (general solution)

\[\int g(y)dy = \int f(x)dx + c \]

2) 牛頓冷卻定律：

\[\frac{dT}{dt} = -k(T - T_A) \]

\(T \) 為隨時間變化的溫度，\(T_A \) 為環境溫度 (通常為常數)，\(k \) 為溫度係數。
1.2 正合方程式的與積分因子

1) 正合方程式：

若 \(\exists u(x, y) \) \(\in \) \(du = \frac{\partial u}{\partial x} \, dx + \frac{\partial u}{\partial y} \, dy \)

可令

\[
\begin{aligned}
\frac{\partial u}{\partial x} &= M(x, y) \\
\frac{\partial u}{\partial y} &= N(x, y)
\end{aligned}
\]

則稱 \(M(x, y)dx + N(x, y)dy = 0 \) 為『正合』(exact)，

而 \(u(x, y) = c \) 為正合方程式 \(M(x, y)dx + N(x, y)dy = 0 \) 之通解。

2) 正合方程式 \(M(x, y)dx + N(x, y)dy = 0 \) 之條件：

\[
\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}
\]

3) 正合方程式 \(M(x, y)dx + N(x, y)dy = 0 \) 之解法：

\[
\begin{aligned}
\left\{ \begin{array}{l}
\frac{\partial u}{\partial x} = M(x, y) \\
\frac{\partial u}{\partial y} = N(x, y)
\end{array} \right. & \Rightarrow \left\{ \begin{array}{l}
u = \int M(x, y)dx + k(y) \\
u = \int N(x, y)dy + l(x)
\end{array} \right. \\
& \Rightarrow \text{可得} \ u(x, y) = c
\end{aligned}
\]

4) 非正合方程式之積分因子：

若 O.D.E. \(P(x, y)dx + Q(x, y)dy = 0 \) 為非正合方程式 (即 \(\frac{\partial Q}{\partial x} \neq \frac{\partial P}{\partial y} \))，

但同乘上 \(F(x, y) \) 後 \(FPdx + FQdy = 0 \)，

會變為正合方程式 (即 \(\frac{\partial (FQ)}{\partial x} = \frac{\partial (FP)}{\partial y} \))，

則稱 \(F(x, y) \) 為非正合方程式 \(P(x, y)dx + Q(x, y)dy = 0 \) 之『積分因子』。
5) 積分因子速解法：

<table>
<thead>
<tr>
<th>條 件</th>
<th>含 意</th>
<th>積分因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) = (R(x))</td>
<td>(x)-dependent</td>
<td>(F(x) = \exp \int R(x) , dx)</td>
</tr>
<tr>
<td>(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) = (R(y))</td>
<td>(y)-dependent</td>
<td>(F(y) = \exp \int R(y) , dx)</td>
</tr>
<tr>
<td>(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) = (R(x + y))</td>
<td>((x + y))-dependent</td>
<td>(F(x + y) = \exp \int R(x + y) , dx)</td>
</tr>
<tr>
<td>(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) = (R(xy))</td>
<td>(xy)-dependent</td>
<td>(F(xy) = \exp \int R(xy) , dx)</td>
</tr>
</tbody>
</table>

▌1.3 線性常微分方程式與白努力方程式

1) 一階線性常微分方程式：\(y' + p(x)y = r(x) \)

(1) 先解齊性線性 ODE：\(y' + p(x)y = 0 \) ⇒ \(y(x) = ce^{-\int p(x)dx} \)

(2) 再求積分因子：\(F(x) = e^{\int p(x)dx} \)

(3) 可得通解：

\[
y(x) = e^{-\int p(x)dx} \left(\int e^{\int p(x)dx} r(x) \, dx + c \right)
= e^{-h} \left(\int e^{hr(x)} \, dx + c \right), \quad h = \int p(x) \, dx.
\]
2) 白努力方程式 (Bernoulli equation):

\[\frac{dy}{dx} + p(x)y = g(x)y^a \]

解法：令 \(u(x) = [y(x)]^{1-a} \)，則 \(\frac{du}{dx} = (1-\alpha)y^{-\alpha}(x)\frac{dy}{dx} \)

\[\Rightarrow \frac{du}{dx} + (1-\alpha)p(x)u = (1-\alpha)g(x) \] 簡化為線性 ODE。

3) 李卡迪方程式 (Riccati equation):

\[y' + p(x)y = g(x)y^2 + h(x) \]

(1) 題目須先給定一組已知解 \(y_1 \)，若題目未給定，讀者可自行先令

\[y_1 = ax^b \text{ 或 } y_1 = ae^{bx} \] 代入 \(y' + p(x)y = g(x)y^2 + h(x) \)，即可得一組已知解 \(y_1 \)。

(2) 令 \(y = z + y_1 \)，則 \(y' = z' + y'_1 \) 代入 \(y' + p(x)y = g(x)y^2 + h(x) \) 可得

\[z' + y'_1 + p(x)(z + y_1) = g(x)(z + y_1)^2 + h(x) \]

\[\Rightarrow z' + (p - 2y_1g)z = gz^2 \] 為『白努力方程式』。

▌1-4 正交軌跡(Orthogonal Trajectories)

1) 先將單參數曲線族(one-parameter family of curves)

\[G(x, y, c) = 0 \]

當作通解，其中 \(c \) 為該曲線族之參數(parameter)，

整理成一階 ODE \(y' = f(x, y) \)。

2) 則該曲線族之正交軌跡(Orthogonal Trajectories)，

可表為另一個 ODE \(\dot{y}' = -\frac{1}{f(x, \dot{y})} \)。

3) 上式之解 \(G^*(x, \dot{y}, c^*) = 0 \)，即為曲線族 \(G(x, y, c) = 0 \) 之正交軌跡。
1-5 解之存在性與唯一性

1) 鄰域：
\[N = \{ (x, y) \mid |x-x_0|<a, |y-y_0|<b \} \]

2) 定理 1：存在性定理

\[\text{ODE } y' = f(x, y), \quad \text{BC } y(x_0) = y_0 \]

若 \(f(x, y) \) 在鄰域為連續，且滿足 \(|f(x, y)| \leq K \) (有界)

則該 ODE 在 \(|x-x_0|<\alpha \) 必有解。 (其中， \(\alpha = \min \{a, \frac{b}{K}\} \))

3) 定理 2：唯一性定理

\[\text{ODE } y' = f(x, y), \quad \text{BC } y(x_0) = y_0 \]

若 \(f(x, y) \) 與 \(\frac{\partial f}{\partial y}(x, y) \) 在 \(N \) 為連續，且

\[\begin{align*}
|f(x, y)| & \leq K \\
\left| \frac{\partial f}{\partial y}(x, y) \right| & \leq M
\end{align*} \]

(有界)

則該 ODE 在 \(|x-x_0|<\alpha \) 必有唯一解。
2.1 二階齊性線性 ODE

1) 二階常線性微分方程式：
\[y'' + p(x)y' + q(x)y = r(x) \]

2) 二階常線性齊性微分方程式：
\[y'' + p(x)y' + q(x)y = 0 \]

3) 重疊原理(superposition principle)：
若 \(y_1, y_2 \) 為線性且齊性 ODE \(a_2(x)y'' + a_1(x)y' + a_0(x)y = 0 \) 的解，
則 \(y_1 \) 與 \(y_2 \) 的線性組合(linear combinations) \(c_1y_1 + c_2y_2 \) 一定是該
ODE \(a_2(x)y'' + a_1(x)y' + a_0(x)y = 0 \) 的解。

3) 降階法(reduction of order)：

題型 \(y'' + p(x)y' + q(x)y = 0 \)

解法 若已知 \(y_1(x) \) 為一組齊性解，
則可令 \(y = uy_1 \) 代入，來求第二組齊性解，
得到一個『一階齊性 ODE』 \(U' + \left(\frac{2y_1'}{y_1} + p \right)U = 0 \) (其中 \(U' = U \))

\[U = \frac{1}{y_1^2} e^{-\int p(x)dx} \] 且 \(y = y_1u = y_1 \int U \) dx。
2.2 常係數之齊性線性 ODE

1) 二階常係數齊性線性常微分方程式:

\[y'' + ay' + by = 0 \]

① 解法：令 \(y = e^{lx} \) 代入齊性方程式 \(y'' + ay' + by = 0 \)

\[\Rightarrow (\lambda^2 + a\lambda + b)e^{lx} = 0 \]

得 特徵方程式：\(\lambda^2 + a\lambda + b = 0 \)

② 因式分解得 \(\lambda = \lambda_1, \lambda_2 \)

由重疊原理(superposition principle)

<table>
<thead>
<tr>
<th>特徵值</th>
<th>齊性解</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_1 \neq \lambda_2) (相異實根)</td>
<td>(y_h(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x})</td>
</tr>
<tr>
<td>(\lambda_1 = \lambda_2 = -\frac{a}{2}) (二重根)</td>
<td>(y_h(x) = (c_1 + c_2 x)e^{\lambda x} = (c_1 + c_2 x)e^{\frac{-a}{2}x})</td>
</tr>
<tr>
<td>(\lambda = -\frac{a}{2} \pm i\omega) (共軛複根)</td>
<td>(y_h(x) = e^{\frac{-a}{2}x} [c_1 \cos \omega x + c_2 \sin \omega x])</td>
</tr>
</tbody>
</table>

2.3 微分運算子

1) 微分算子(the differential operator):

常係數線性 ODE \(ay'' + by' + cy = r(x) \)

先定義微分算子(the differential operator) \(D \equiv \frac{d}{dx} \)
\[Dy = y' = \frac{dy}{dx} \quad \Rightarrow D^2 y = D(Dy) = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2 y}{dx^2}, \]

則 O.D.E. 可簡代成 \((aD^2 + bD + c)y = r(x)\)

2) 其中，\(aD^2 + bD + c\) 稱為線性多項式算子(linear polynomial operator)，
記作 \(L(D) = aD^2 + bD + c\)

2.4 模型化：自由振動

1) 無阻尼(undamped)系統：

\[my'' + ky = 0 \]

2) 阻尼(damped)系統：

\[my'' + cy' + ky = 0 \]

<table>
<thead>
<tr>
<th>特徵值</th>
<th>齊性解</th>
</tr>
</thead>
</table>
| \(c^2 > 4mk\) （相異實根） \(
\lambda = -(\alpha \pm \beta)\) | 過阻尼(overdamping) \(y = c_1 e^{-(\alpha + \beta)t} + c_2 e^{-(\alpha - \beta)t}\) |
| \(c^2 = 4mk\) （二重根） \(\lambda = -\alpha, -\alpha\) | 臨界阻尼(critical damping) \(y = (c_1 + c_2 t)e^{-\alpha t}\) |
| \(c^2 < 4mk\) （共軛複根） \(\lambda = -\alpha \pm i\omega\) | 欠阻尼(underdamping) \(y = e^{-\alpha t} \left[c_1 \cos \omega t + c_2 \sin \omega t \right] = e^{-\alpha t} \left[c_1 \cos(\omega t - \delta) \right] \) |
2.5 尤拉・柯西方程式

1) Euler-Cauchy 尤拉・柯西等維方程式:

\[x^2 y'' + axy' + by = 0 \]

2) 解法：令 \(y = x^m \) 代入，得特徵方程式 \(m^2 + (a - 1)m + b = 0 \)

\[\Rightarrow \text{因式分解 } m = m_1, m_2 \]

由重疊原理 (superposition principle)

<table>
<thead>
<tr>
<th>特徵值</th>
<th>齊性解</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_1 \neq m_2)（相異實根）</td>
<td>(y_h(x) = c_1 x^{m_1} + c_2 x^{m_2})</td>
</tr>
<tr>
<td>(m_1 = m_2)（二重根）</td>
<td>(y_h(x) = (c_1 + c_2 \ln x) x^{m_1})</td>
</tr>
<tr>
<td>(m = p \pm iq)（共軛複根）</td>
<td>(y_h(x) = x^p [c_1 \cos q(\ln x) + c_2 \sin q(\ln x)])</td>
</tr>
</tbody>
</table>

2.6 解的存在性及唯一性、Wronskian 行列式

1) 線性獨立與線性相依:

給定 \(\{y_1(x), y_2(x)\} \) 2 個相異函數，先令 \(c_1 y_1(x) + c_2 y_2(x) = 0 \)

(1) 若 \(c_1 = c_2 = 0 \)（唯一零解），則稱 \(\{y_1(x), y_2(x)\} \) 為

『線性獨立』 (Linear Independent, L.I.)。

(2) 若存在非零解，則稱 \(\{y_1(x), y_2(x)\} \) 為

『線性相依』 (Linear Dependent, L.D.)。

建國理工研究所網站：
http://www.getgoal.com.tw
2) Wronskian 行列式：

\[W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = y_1(x)y'_2(x) - y_2(x)y'_1(x) \]

（1）若 \(\{y_1(x), y_2(x)\} \) 為『線性相依』 \(\Rightarrow W = 0 \)
（1）若 \(W \neq 0 \) \(\Rightarrow \) 則 \(\{y_1(x), y_2(x)\} \) 為『線性獨立』。

3) 定理：存在性定理

\[
\text{ODE } y'' + p(x)y' + q(x) = 0
\]

若 \(p(x), q(x) \) 在區間 \(I:(a,b) \) 為連續，則在 \(I \) 必有通解。

4) 定理：唯一性定理

\[
\text{ODE } y'' + p(x)y' + q(x) = 0, \quad \text{BC } \begin{cases} y(x_0) = K_0 \\ y'(x_0) = K_1 \end{cases}
\]

若 \(p(x), q(x) \) 在區間 \(I:(a,b) \) 為連續，則在 \(I \) 必有唯一解，
且該唯一解可由任意指定常數 \(c_1, c_2 \)，
代入 \(y(x) = c_1y_1(x) + c_2y_2(x) \) 而得到。

2.7 非齊性 ODE

1) 非齊性二階常係數 ODE：

\[y'' + ay' + by = r(x) \]

2) 待定係數法(the method of undetermined coefficient)：

待定解 \(y_p(x) \) 假設成與 \(r(x) \) 相類似的項，再去比較未定的係數：

<table>
<thead>
<tr>
<th>forcing term (r(x))</th>
<th>特解 (y_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^{nx})</td>
<td>(Ce^{nx})</td>
</tr>
<tr>
<td>(\cos(\alpha x + \phi)) 或 (\sin(\alpha x + \phi))</td>
<td>(A\cos(\alpha x + \phi) + B\sin(\alpha x + \phi))</td>
</tr>
</tbody>
</table>
2.8 模型化：強迫振動、共振

1) 強迫振動：

考慮圖中之單自由度系統，此系統於外力 $f(t)$ 作用下之運動方程如下：

$$m \frac{d^2 y}{dt^2} + c \frac{dy}{dt} + ky = f(t)$$

其中，t 是時間，則 $f(t)$ 是外力。

2) 週期性強迫振動：

外力 $f(t) = F_0 \cos \omega t$ 作用下之運動方程如下：

$$m \frac{d^2 y}{dt^2} + c \frac{dy}{dt} + ky = F_0 \cos \omega t$$

可得特解

$$y_p = F_0 \frac{k - m \omega^2}{(k-m\omega^2)^2 + \omega^2 c^2} \cos \omega t + F_0 \frac{\omega c}{(k-m\omega^2)^2 + \omega^2 c^2} \sin \omega t$$

建國理工研究所網站：
http://www.getgoal.com.tw
3) 無阻尼(undamped)系統：

\[my'' + ky = F_0 \cos \omega t \]

\[\Rightarrow my'' + m\omega_0^2 y = F_0 \cos \omega t \]

可得通解

\[y(t) = y_h + y_p = C \cos(\omega_0 t - \delta) + \frac{F_0}{m\omega_0^2 - m\omega^2} \cos \omega t \]

4) 共振(resonance)：

方程式 \(my'' + m\omega_0^2 y = F_0 \cos \omega t \) 之解

具相公共振動頻率 \(\omega = \omega_0 \) 時

\[my'' + m\omega_0^2 y = F_0 \cos \omega_0 t \]

\[\Rightarrow y'' + \omega_0^2 y = \frac{F_0}{m} \cos \omega_0 t, \text{ 可得 特解} \]

\[y_p(t) = \frac{F_0}{2m\omega_0} - t \sin \omega_0 t \]

同理，方程式 \(y'' + \omega_0^2 y = \frac{F_0}{m} \sin \omega_0 t \)

\[y_p(t) = \frac{F_0}{2m\omega_0} t \cos \omega_0 t \]

2.9 模型化：電路(Kirchhoff 定理)
2.10 參數變更法 (Variation of Parameters)

ODE \(\frac{d}{dx} y'' + p(x) y' + q(x) y = r(x) \)

1) 先求齊性解：

\[y'' + p(x) y' + q(x) y = 0 \]

\[y_h(x) = c_1 y_1(x) + c_2 y_2(x) \]

2) 由參數變更法：

令特解 \(y_p(x) = u(x) y_1(x) + v(x) y_2(x) \)

代入 ODE \(\frac{d}{dx} y'' + p(x) y' + q(x) y = r(x) \)，

\[
\begin{cases}
 u(x) = - \int \frac{y_2 r}{W} \, dx \\
 v(x) = \int \frac{y_1 r}{W} \, dx
\end{cases}
\]

\[y_p(x) = - y_1 \int \frac{y_2 r}{W} \, dx + y_2 \int \frac{y_1 r}{W} \, dx \]